A Study of the Atherton-Todd Reaction Mechanism

K. Troev, E. M. G. Kirilov, and D. M. Roundhill*, †

Central Laboratory for Polymers-Bulgarian Academy of Sciences, Sofia 1040, Bulgaria [†]Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, U. S. A. (Received August 4, 1989)

Synopsis. It has been shown that alkylammonium methyl phosphonates [CH₃OP(O)HO]- [NCH₃R₃]+ and sodium ethyl phosphonate [CH₃CH₂OP(O)HO] Na⁺ catalyse the Atherton-Todd reaction. It has been established that the alkylammonium salts themself react with carbon tetrachloride to give chloroform, resulting in the postulate that base activation leads to the monoalkyl phosphonate anion.

The Atherton-Todd reaction proceeds, as is wellknown, 1-5) only under basic reaction conditions (Eq. 1). It is assumed⁴⁻⁶⁾ that the first step in this interaction involves proton abstraction from the dialkyl phosphonate in solution (Eq. 2). The active species so formed reacts further with carbon tetrachloride, finally yielding the Atherton-Todd reaction products.

$$(RO)_2P(O)H + CCl_4 \xrightarrow{B} (RO)_2P(O)Cl + CHCl_3$$
 (1)

$$(RO)_2P(O)H + B \rightarrow [(RO)_2PO]^-[HB]^+$$
 (2)
 $(B = E_{t_3}N, NaH, RONa, (RO)_3P)$

It has been otherwise established⁷⁻¹¹⁾ that the treatment of dialkyl phosphonates with amines leads to the formation of the corresponding alkylammonium alkyl phosphonate. 12,13)

$$(RO)_{2}P(O)H + NR'_{3} \rightarrow [RO - P - O]^{-}[NRR'_{3}]^{+}$$
(3)

Similar products are formed by the reaction of the sodium salt of dialkyl phosphonates with an excess of dialkyl phosphonate itself. 14) Taking into account that these two reactions (Eqs. 3 and 4) can proceed under Atherton-Todd reaction conditions, the interaction of dimethyl phosphonate with carbon tetrachloride was performed in the presence of catalytic amounts of both alkylammonium methyl phosphonate and sodium ethyl phosphonate.

$$(RO)_{2}P(O)H + [(RO)_{2}PO]^{-}Na^{+} \longrightarrow O$$

$$[RO-P-O]^{-}Na^{+} + (RO)_{2}P(O)R \qquad (4)$$

Results and Discussion

The following catalysts shown in Scheme 1 have been used in this study.

O O
$$[CH_3O-P-O]^-[NCH_3R'R''R''']^+$$
 $[CH_3CH_2O-P-O]^-Na^+$ H (1) $R'=R''=R'''=CH_3CH_2$ (3) (2) $R'=R''=H$, $R'''=n-C_4H_9$ Scheme 1.

The structures of these salts were established by a combination of ¹H, ¹³C, ³¹P NMR, and IR spectroscopy. The ³¹P NMR chemical shifts are at δ =5.88, 3.93, and 4.91 for 1, 2, and 3 respectively, values which are indicative of phosphonium type compounds. 15) The P-H bond is characterized by an approximate 600 Hz coupling due to ${}^{1}J(PH)$ in both the ${}^{1}H$ and the ³¹P NMR spectra. In the IR spectra the P-H and P=O stretching frequencies are lowered by ca. 100 and 30— 50 cm⁻¹ respectively when compared with the corresponding dialkyl phosphonate-precursor. This shift is probably due to the charge delocalization in the anionic fragment.

The Atherton-Todd reaction was carried out in the presence of catalytic amounts of the salts shown in Scheme 1 (a mole ratio of dimethyl phosphonate: catalyst of 50:1 was used). The mixtures were analyzed by ¹H NMR spectroscopy. In all cases chloroform liberation was established. The yields were estimated from the integral ratio for the chloroform and P-H (of the unconverted dimethyl phosphonate) protons (Table 1). The chemical shift of the chloroform

Table 1. Reaction of Dimethyl Phosphonate with Carbon Tetrachloride in the Presence of Catalytic Amounts of the Compounds 1, 2, 3, and Triethylamine

Catalyst	Temperature	Time	Proton integration ratio PH: CHCl ₃	Yield
	°C			%
1	75	5.5 h	22:15	40.5
3	75	5.5 h	19:2	9.5
Et_3N	75	5.5 h	19:4	17.4
2	75	2.0 h	30:5	$14.3^{a)}$
1	25	l week	22:3	12.0
3	25	l week	26:1	3.7

Volume of the reaction mixtures are 12.3 cm3 (4.6 cm3 of dimethyl phosphonate and 7.7 cm3 of CCl₄). The catalyst concentrations were 8×10^{-3} mol dm⁻³.

a) With vigorous stirring.

proton in the product mixture occurs at relative low field (ca. 8 ppm) in comparison with the free chloroform. This is explained 16,17) in terms of hydrogen bond formation with the phosphoryl oxygen from dimethyl phosphonate. In all spectra the CHCl3 signals are verified by addition of a drop of CHCl3 to the sample. The methoxy protons of the reaction product (CH₃O)₂P(O)Cl show as a doublet at δ=3.73 (J(PH)=12 Hz), close to the doublet of the unconverted dimethyl phosphonate at $\delta=3.76$ (J(PH)=12Hz), hence these two signals are integrated together. Integration of these proton resonances against that of CHCl₃ confirms that the conversion of (CH₃O)₂P(O)H into (CH₃O)₂P(O)Cl results in the liberation of one equivalent of chloroform. From Table 1, it is apparent that the yield of (CH₃O)₂P(O)Cl is lowest for 3, but it is twice as high for Et₃N, and four times as high The relative low activity of the sodium salt 3 is for **1**. probably due to its low solubility in the reaction mixture.

It has been established by an ¹H NMR stydy of the reaction mixture of the alkylammonium salts 1 and 2, and CCl₄, that both salts react exothermically with CCl₄ to liberate CHCl₃. This reaction is carried out under stirred conditions at ambient temperature, and the formation of CHCl₃ is verified by the appearance of its growth in the ¹H NMR spectrum. The alkylammonium chlorophosphonates formed are converted to the methyl phosphonate by reaction with methanol, and these final products are confirmed by ¹H, ¹³C, and ³¹P NMR.

These experiments show that the alkylammonium or sodium salts of monoalkyl phosphonates catalyze the Atherton-Todd reaction. This leads us to propose that the basic activation in this reaction involves formation of the monoalkyl phosphonate anion [(RO)PHO₂]-, which further catalyses the interaction between CCl₄ and (RO)₂P(O)H (Eq. 5).

$$(RO)_{2}P(O)H + CCl_{4} \xrightarrow{[RO-\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{}}{\longrightarrow}}O]^{-}K^{+}}{H}} (RO)_{2}P(O)Cl + CHCl_{3}$$

$$K=alk.M$$

$$K=RR'R''R'''N$$

$$(5)$$

Our data do not support the earlier proposed mechanisms for this reaction¹⁻⁶⁾ in which the three coordinated anion [(RO)₂PO]⁻, obtained by deprotonation of the dialkyl phosphonate with the basic compound, is postulated to play the key role.

Experimental

Infrared spectra were recorded on a Perkin-Elmer 983 spectrometer. Nuclear magnetic resonance spectra were run on Bruker WM 250 and Tesla BS 467 spectrometers at 250 and 60 MHz for protons, 62.5 for ¹³C and 101.7 for ³¹P.

Synthesis of the Catalysts. The alkylammonium salts 1 and 2 were obtained as follows. To a solution of 20.45 g freshly distillated dialkyl phosphonate in MeOH (20 cm³) was added excess amine. The mixture was refluxed for 2 h, and the MeOH and the excess of amine were removed under reduced pressure. Compound 3 was prepared according to Ref. 18.

Spectroscopic Data: [(CH₃O)-P(O)OH]-[NH₂(CH₃)CH₂-CH₂CH₂CH₃]⁺ (1). IR (KBr film) 1210 (ν P=O) and 2348 (ν P-H) cm⁻¹; ³¹P NMR (CDCl₃) 5.88 (¹J(PH)=607 Hz, ³J(PH)=13 Hz); ¹H NMR (250 MHz, CDCl₃) δ=0.94 (t, 3H, J(HH)=7.4 Hz, d-CH₃), 1.40 (sext., 2H, J(HH)=7.4 Hz, c-CH₂), 1.70 (pent., 2H, J(HH)=7.4 Hz, b-CH₂), 2.82 (t, 2H, J(HH)=8 Hz, a-CH₂), 3.33 (s, 3H, NCH₃), 3.52 (d, 3H, J(PH)=12.0 Hz, POCH₃), 6.72 (d, 1H, J(PH)=607.1 Hz, P-H), 8.72 (br. s, 2H, NH).

[(CH₃O)-P(O)HO]-[N(CH₃)(CH₂CH₃)₃]⁺ (2). IR (KBr film) 1235 (ν P=O) and 2313 (ν P-H) cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ=1.37 (t, 9H, J(HH)=7.2 Hz, CH₃), 3.13 (s, 3H, NCH₃), 3.48 (q, 6H, J(HH)=7.2 Hz, CH₂), 3.53 (d, 3H, J(PH)=11.9 Hz, POCH₃), 6.81 (d, 1H, J(PH)=594.8 Hz, P-H); ¹³C{¹H}NMR (CDCl₃) δ=6.57 (CH₃), 45.48 (CH₂), 48.91 (POCH₃), 54.61 (NCH₃); ³¹P NMR (CDCl₃) 3.93 (J(PH)=635 Hz, J(PH)=9 Hz).

[(CH₃CH₂O)-P(O)HO]-Na⁺ (3). IR (KBr) 1222 (ν P=O) and 2369 (ν P-H) cm⁻¹; ¹H NMR (250 MHz, D₂O) δ =1.26 (t, 3H, J(HH)=7.1 Hz, CH₃), 3.91 (d.q., 2H, J(HH)=7.2 Hz, J(PH)=8.2 Hz, CH₃), 7.21 (d, 1H, J(PH)=633.2 Hz, P-H); ¹³C{¹H}NMR (D₂O) δ =18.72 (CH₃, 63.18 (CH₂)); ³¹P NMR (D₂O): 4.91 (¹J(PH)=596.0 Hz, ³J(PH)=11.6 Hz).

Catalytic Experiments, General Procedure. Dimethyl phosphonate (5.5 g, 50 mmol) and the catalyst (1 mmol) were reacted with an excess of CCl₄ (12.3 g, 80 mmol) under the conditions described in Table 1. Samples were taken after that from the reaction mixture and investigated by ¹H NMR (60 MHz) spectroscopy without addition of any solvent.

References

- 1) F. Atherton, A. Openshaw, and A. Todd, *J. Chem. Soc.*, **1945**, 660.
 - 2) F. Atherton and A. Todd, J. Chem. Soc., 1947, 674.
- 3) L. Riesel, E. Herrmann, and J. Steinbach, *Phosphorus and Sulfur*, 18, 253 (1983).
- 4) A. Kong and R. Engel, *Bull. Chem. Soc. Jpn.*, **58**, 3671 (1985).
- 5) E. E. Nifantiev, V. S. Blagowestenskij, A. M. Sokurenko, and L. S. Skljarskij, *Zh. Obshch. Khim.*, **44**, 108 (1973).
 - 6) G. M. Steinberg, J. Org. Chem., 15, 632 (1950).
- 7) U. S. Patent 281534 (1957); Chem. Abstr., **52**, 5485a (1958).
- 8) U. S. Patent 2842113 (1958); Chem. Abstr., **52**, 11110f (1958).
- 9) U. S. Patent 3253036 (1962); Chem. Abstr., 65, 5397 (1966).
- 10) N. Thoung, Bull. Soc. Chim. Fr., 1971, 9281.
- 11) K. Troev and G. Borisov, *Phosphorus and Sulfur*, 29, 129 (1982).
- 12) E. Philippot and O. Lindquist, *Acta Chem. Scand.*, **24**, 2803 (1970).
- 13) J. Emsley, J. Lucas, R. Parker, and R. E. Ovrrill, *Polyhedron*, 2, 19 (1983).
- 14) Z. Pelchowicz, S. Brukson, and E. Bergmann, J. Chem. Soc., 1961, 4384.
- 15) V. Mark, C. H. Dungan, M. M. Crutchfield, and J. R. Van Wazer, "³¹P Nuclear Magnetic Resonance," in "Topics in Phosph. Chem.," John Wiley & Sons, New York (1967), Vol. 5, pp. 291—292.
- 16) G. Kosolapoff and J. F. McCullogh, *J. Am. Chem. Soc.*, **73**, 5392 (1951).
- 17) M. W. Hanson and J. B. Bouck., J. Am. Chem. Soc., **79**, 5631 (1957)
- 18) V. V. Orlovskij, D. Vovsi, and A. Mukevicz, *Zh. Obshch. Khim.*, **42**, 1930 (1972).